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Abstract
By extending the quasiharmonic approximation to a quantum particle within a local potential of
the double Morse type, a model describing the ferroelectric phase transition in SrTiO3 induced
by oxygen isotope replacement is developed. The theory uses the variational principle method
at finite temperature with emphasis on the quantum effect manifested in zero-point vibration.
The ferroelectric–paraelectric transition in SrTi(16O1−x

18Ox)3 is analyzed and the x–Tc phase
diagram is compared with the experimental one in order to confirm the qualitative validity of
the model. The quantum mechanical effect and the evolution of the ferroelectricity in
SrTi(16O1−x

18Ox)3 are also demonstrated theoretically and the soft mode of SrTi(16O1−x
18Ox)3

shows a perfect softening at the ferroelectric phase transition for x � xc ≈ 0.32. Finally, the
study shows the importance of the mass of component ions and that isotope introduction has
several effects even if the mass effect is predominant.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The typical quantum paraelectric behavior [1] is well known
for pure SrTiO3 with 16O (abbreviated as STO16) below
40 K, because it keeps paraelectricity until T = 0 K by the
quantum fluctuation, which seems to depress the occurrence
of the ferroelectric order [2–6]. Also, ferroelectricity in
SrTiO3 doped with Ca2+ ions or chemically equivalent
(polar impurities) [7], or induced by an electric field [8] or
uniaxial stress [9], has attracted unrivaled interest in the low
temperature properties of this compound. Thus, the average
mass of the A-site ion was found to be a determining factor
for the evolution of ferroelectricity in SrTiO3 and perovskite
titanate compounds [10], suggesting the importance of mass
balance between A and TiO3, i.e. the last mode [11] in their
evolution. It is the same for the Slater mode [12] (which is the
vibrational relation of Ti and O3). Moreover, previous studies
have suggested that an admixture of the two modes plays a
role in the evolution of ferroelectricity in PbTiO3 and BaTiO3,
by increasing the nonlinear response of the vibrating system
to the external field, which contributes to a softening of the
modes [13].

Recently, an unexpected finding of isotope induced
ferroelectricity in SrTiO3 by the exchange of 16O in STO16
by its isotope 18O with the transition temperature Tc around
24 K for a maximum isotope exchange, corresponding to
a broad dielectricity maximum, has renewed the interest in
the quantum fluctuation dominated regime, suggesting the
stabilization of the ferroelectric phase [14]. Since then,
many intensive experimental and theoretical studies have been
carried out in order to understand well the phase transition
mechanism and to elucidate the soft mode behavior related
to the quantum fluctuations of SrTi(16O1−x

18Ox)3 (hereafter,
abbreviated as STO18-x and the fully substituted one SrTi18O3

for x = 1 as STO18), their occurrence phenomenon, the crystal
structure of the ferroelectric phase and so on. Behind the giant
anomalous dielectricity associated with the appearance of the
peak of the static dielectric constant as the concentration of the
18O ions exceeds the critical concentration xc = 0.33 [14–17],
the reproduction of the observed x–T phase diagram, based on
the ‘multicomponent vector model’ of Schneider et al if the
‘critical quantum displacive limit’ is assumed to be realized at
x = xc, has been performed and analyzed [18, 19]. On the
other hand, microscopic observations of the soft TO phonon
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have recently been carried out on STO18-x by using neutron
inelastic scattering technique, showing essential discrepancies
with the expected characteristics of the TO phonon frequency
ω0(T ) [20].

Also, some observations by inelastic neutron scattering
have reported that the transverse optic Eu soft mode in STO18
softens [21], but does not condense at Tc, independently
of the concentration of 18O within the resolution of the
neutron scattering experiment and the same as in STO16
practically [20, 22]. Thus, the softening of the polar TO
soft mode [23, 24] would not be the only mechanism driving
the ferroelectric transition in STO18 as assumed so far.
Some other mechanism must be present too. Accordingly, a
nondisplacive phase transition mechanism has been suggested
in STO18 [22, 25, 26]. But recently, Takesada et al
have reported a successful observation of the temperature
dependence of the ferroelectric soft mode Eu in STO18 [27],
not previously revealed by inelastic scattering [20, 22], in
the extremely low frequency region, using a high resolution
technique and an ultrastable optical cryostat. They have
found perfect softening at the ferroelectric phase transition
temperature Tc in STO18 for the first time, and the mechanism
of the ferroelectric phase transition is concluded to be an ideal
displacive type associated to the Slater-type polar soft mode.

Amongst other things, in spite of all these studies, the
nature of the ferroelectric phase transition induced by the
exchange of oxygen 16O by its isotope 18O and the low
temperature ferroelectric state thus obtained still remains
controversial. This is manifested in both theoretical and
experimental works. For example, while some authors
predict a displacive soft mode mechanism of the phase
transition into the conventional ferroelectric state [28, 29],
Zhang et al suggested the order–disorder nature of this phase
transition [25], whereas Yamada et al interpreted it in terms
of a transition into a three-state quantum Ising model [22].
In addition, while recently Raman scattering [30], Brillouin
scattering [31], and birefringence [32] measurements etc have
further confirmed the ferroelectric phase transition in STO18-
x (x � 0.33), the smeared dielectric peak around Tc,
the relaxation of polarization with time below Tc, the large
amplitude dependence of the real part and the large bias
dependence of the dielectric constant ε′ suggest that STO18
is far from being a typical ferroelectric [16, 17, 33].

Accordingly, the origin of ferroelectricity in perovskite
oxides has not been completely elucidated and, in particular,
just a little is known about the quantum effect of
ferroelectricity. Although different approaches have been
taken to explain oxygen isotope induced ferroelectricity in
SrTiO3, the critical temperature Tc has been usually found by
dielectric constants, pyroelectricity, DE-loop measurements
and so on [14, 15, 34], which depend strongly on the amplitude
of the applied ac field (test signal). However, although
it characterizes only the T � 40 K, indicating that the
enhancement by the ac test signal is closely related to the low
temperature polar state, very small shifts in peak temperature
were observed as a function of frequency [16].

For the present study, in order to overcome the
shortcomings and to model well the dynamic and static

properties of soft mode systems, the double Morse potential
is considered [35]. Then, besides describing correctly the soft
mode temperature dependence, the global lattice potential has
been shown to be extremely sensitive to changes, as in the
ionic masses [36]. In this work, employing the quasiharmonic
approximation proposed by Salje et al [37], we give an
analytical description of the structural phase transitions in a
nonlinear simple microscopic model in which the substrate
potential is a deformable double-well potential of double
Morse type [36]. The interparticle potential is described by
an appropriate harmonic interaction potential that reflects the
change in the electronic distribution of the sites. We develop a
mean-field treatment for this model to analyze structural phase
transitions and examine how the disparities in the single site
potential are manifested in the thermodynamics and response
of the systems to external influences. The particular one
developed here is a modification and extension of a theory
originally introduced by Thomas [37, 38], to analyze second-
order and tricritical transitions.

The organization of the paper is as follows. In section 2,
we present the model formulation. The mean-field theory is
used to derive the analytical expression of the free energy,
and the mean-field equations are obtained and analyzed. In
this connection, the origin of the thermodynamic saturation
is presented, where the quantum saturation and fluctuation of
order parameter have been recognized and have an important
influence on the behavior of the systems. Also, the influence
of the quantum effect is analyzed. In section 3, using a
plausible assumption that the potential splitting d and the
interaction strength υ are 18O-exchange rate x dependent,
the model and theory are applied to the 18O-exchanged
SrTiO3 (STO18-x). The corresponding calculated x–Tc

phase diagram has been investigated and analyzed, and the
paraelectric phase stabilized by quantum fluctuations at low
temperatures has been reinvestigated. According to this study,
the oxygen isotope exchange of 16O for 18O affects mainly
lattice vibration. The numerically calculated values of the
critical fraction (exchange rate) xc of the isotope corresponding
to Tc = 0 K and the transition temperature for the maximum
isotope exchange (STO18) are given. Calculations are also
performed in order to give the temperature dependence of the
susceptibility, the inverse susceptibility and the specific heat
for the oxygen isotope effect. It is shown that the perfect
softening phenomenon of the soft mode takes place at the
ferroelectric phase transition temperature through the inverse
susceptibility for x � xc and that the quantum fluctuations
govern the low temperature regime. We devote section 4 to a
discussion of results and a conclusion.

2. Formulation and theory

In a crystal consisting of N lattice sites, let Ql be a local
coordinate which describes the phase transition in the lth unit
cell; then, the Hamiltonian to describe the quantum system is
given by [39, 40]

H =
∑

l

{
1

2m
p2

l + V (Ql)

}
+ 1

4

∑

l,l′
υll′ (Ql − Ql′ )

2, (1)

2
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where m is the effective mass associated with the local
coordinates Ql , pl are the conjugate momenta, and υll′ are the
interaction constants. Let us assume that the interaction υll′

has its maximum value υ = υq0 > 0, and q0 = 0. Here, the
double Morse type potential, which is formed by superposing
the two Morse potentials ‘back to back’, is adopted as a local
potential of the unit cell, since the Morse potential is widely
accepted to be successful for a covalent-bonding atom and this
characteristic is well known for various materials:

V (Ql) = 2D{exp(−2ad) cosh(2a Ql)

− 2 exp(−ad) cosh(a Ql)}, (2)

where D, a, and d are the parameters proper to the initial
Morse function. The splitting distance between the two
potentials is given by 2d . This local potential, which has
been considered frequently, has an important property: all the
characteristic points of the potential vary at the same time.
Then, as d increases, the barrier height of the double-well
continuously increases and the minima of the potential also
vary continuously with d . Moreover, the barrier between the
two wells is much lower when the two (neighboring) minima
approach each other. This is an essential ingredient, which
allows an easier migration of the particle [41].

According to the quasiharmonic approximation, we adopt
the harmonic oscillator as a trial Hamiltonian H tr:

H tr =
∑

l

[
1

2m
p2

l + 1

2
m�2(Ql − 〈Ql〉)2

]
, (3)

where the bracket 〈· · ·〉 is the thermal average. The
two variational parameters per site: an effective single
site frequency � (same at each site), and the spontaneous
displacement Q = 〈Ql 〉 equivalent to the order parameter
of the ferroelectric transition, have to be determined by
minimizing the free energy of the system with respect to these
parameters. The density matrix is defined by using H tr. The
variational relation for the free energy of the model system is
defined in a mean-field approximation as

F = 〈H 〉 − 〈
H tr

〉 − kBT ln
[
Tr

{
exp

(−H tr/kBT
)}]

. (4)

In this Einstein quasiharmonic approximation the mean-
field description of the statistical mechanics of the system gives
the variational free energy

F = N

{
kBT ln

[
2 sinh

(
h̄�

2kBT

)]
− 1

4
h̄� coth

(
h̄�

2kBT

)}

+ N

{
2D

[
exp(−2ad) exp(2a2σ) cosh(2a Q)

− 2 exp(−ad) exp

(
a2σ

2

)
cosh(a Q)

]
+ 1

2
υσ

}
, (5)

and the self-consistent solutions of the following two
variational mean-field equations:
{

2 exp(−ad) exp(2a2σ) cosh(a Q)

− exp

(
a2σ

2

) }
sinh(a Q) = 0, (6)

m�2 = υ + 4Da2

{
2 exp(−2ad) exp

(
2a2σ

)
cosh (2a Q)

− exp(−ad) exp

(
a2σ

2

)
cosh (a Q)

}
, (7)

where υ = ∑
l′ υll′ . The variance σ is the mean-square

vibrational amplitude of the coordinate, which is related to the
temperature dependent Einstein frequency � by the following
quantum mechanical fluctuation theorem:

σ = 〈
(δQl)

2
〉 = h̄

2m�
coth

(
h̄�

2kBT

)
. (8)

Taking into account the variance σc at the stability-limit points
(critical points) characterized by vanishing order parameter
(Q → 0 from equation (6)), the phase transition occurs at Tc

when

σc = kBθs

υ
coth

(
θs

Tc

)
= 2

3a2
(ad − ln (2)) , (9)

if the transition is second-order one. In this expression, θs is
the saturation temperature related to the ground state energy
E0 = kBθs of the quantum oscillator associated with our
quantum model lattice sites system [42], with energy level
En = h̄�0(1/2 + 〈n〉). Here, �0 = √

υ/m is the bare soft
mode frequency and 〈n〉 = 1/(eh̄�0/kB T − 1), is the average
number of energy quanta excited above the ground state at
temperature T . Thus, h̄�0 is the zero-point energy, and �0

also represents the displacive limit Einstein frequency.
In equation (9), the transition is characterized by two

temperatures, θs and Tc. The existence of a finite θs is
a manifestation of the third law of thermodynamics, which
requires that entropy changes and hence order parameter
changes disappear at absolute zero temperature. However,
determinations of θs, which presents the quantum effect
dependence on the atomic mass, may also yield useful
insights into the behavior of phase transitions, as it is the
temperature below which the temperature dependence of the
order parameter is dominated by the quantum mechanical
effect [37, 43, 44]. It is the temperature of crossover between
classical and quantum mechanical behavior [37, 45]. Then, if
Tc and θs are known for the given self-potential system, the
interaction parameter υ can be estimated from equation (9).

If we apply an external field E to our model, which has the
effect of adding a term −E Q to the free-energy expression (5),
the minimization of equation (5) yields the equation

E = 4Da exp(−ad) sinh(a Q)

×
{

2 exp(−ad) exp(2a2σ) cosh(a Q) − exp

(
a2σ

2

)}
,

(10)

instead of (6). Differentiating both sides of equation (10) with
respect to E and setting Q = 0 (T > Tc), we can estimate the
static susceptibility of the system as follows:

χ−1 = 4Da2 exp(−ad)

×
{

2 exp(−ad) exp(2a2σ) − exp

(
a2σ

2

)}
, (11)

3
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which can be reduced to

χ = λ2

h̄2�2 − λ2υ
(12)

where λ = h̄/
√

m represents a measure of the zero-point
fluctuations. Thus, we can properly identify the quantity
h̄2�2 − λ2υ ≡ ω2

0 with the soft mode if the divergence of
the static susceptibility is to be associated with the long-range
wavelength phonon becoming soft [46]. From equation (9),
the corresponding transition temperature is the temperature
of continuously vanishing order parameter. Then, the system
changes continuously from the paraelectric phase (Q = 0) to
the ferroelectric phase (Q 	= 0) when its temperature decreases
from above Tc to below. Therefore, the second-order transition
temperature, which corresponds to the divergence of the static
susceptibility, is

Tc = θs

/
coth−1

(
T (θs=0)

c

θs

)
, (13)

where T (θs=0)
c is the classical transition temperature defined by

T (θs=0)
c = υσc/kB = T0.

This transition temperature is valid for all self-consistent
solutions. An important point is that, unlike Tc, it seems that θs

is not greatly altered by chemical doping, or the application of
external fields [47]. In order to improve well our theoretical
understanding of the mechanism of phase transitions, and
investigate the quantum effects, the following parameters are
introduced for convenience:

η = h̄/(2m�0σc),

T1 = 2ηT0 = 2θs.
(14)

Here, dimensionless parameter η is a measure of the quantum
influence (quantum effect magnitude) and T1 is another
characteristic temperature. It is important to remark here that
η originates not in the tunneling motion, but in the quantum
vibration (such as zero-point energy) and η = 0 yields the
classical result [36, 41]. In the fully dispersive limit, �0 may
be visualized as a characteristic frequency which is the Einstein
mode frequency for oscillations with the intersite interactions,
in the coupling to Einstein oscillators as dynamical dominant
excitations. Then, a reduction of the transition temperature due
to quantum influences leads to the following result:

Tc = 2υσc

kB
η

/
ln

1 + η

1 − η
= 2T0η

/
ln

1 + η

1 − η
. (15)

Thus, equation (15) shows the influence of the quantum
mechanical effects on the behavior of the system, and the
effect of increasing the involved mass (mass dependence)
on transition temperature through the quantum effect
magnitude η.

3. Isotope-effect-induced transition in strontium
titanate perovskite

In this section, by extending the quasiharmonic approximation
using a mean-field treatment for the above model, we apply

it to the study of the induced ferroelectric phase transition
in STO18-x in order to explain the experimental result that
the incipient quantum paraelectric STO16 can be driven to a
ferroelectric state by replacing 16O by its isotope 18O [14].
We will assume here that the potential splitting d and
the interaction strength υ increase with x . This plausible
assumption takes into account the fact that from the viewpoint
of the crystal stability the induced ferroelectricity of SrTiO3

originates from the crystal status of this material [14], which
may increase the nonlinear response of the vibrating system
to the external field, contributing to a softening of the
modes [21–24, 48–50]. Also, the introduction of isotopes has
several effects (mass effect, volume effect and so on), with
usually the mass effect predominating as in the case of STO18-
x [10, 11, 14, 17, 34], and the properties of these crystals can be
expected to be strongly x dependent. Thus, in order to explain
the evolution of the ferroelectricity in 18O-isotope exchanged
SrTiO3, it is necessary to consider how the parameters will
be affected by the oxygen isotope replacement. According
to all this and to the probable exchange rate x dependence of
some model parameters of STO18-x , and in order to reproduce
experimental results, we adopt the following x dependence for
d and υ:

d = 0.24+0.046x and υ = 0.13+0.003x, (16)

where d and υ are in unit of Å and eV Å
−2

.
However, the mass change of constituent ions causes a

change in the vibrational frequencies of relevant ion pairs,
and for the SrTiO3 model with the O-atom displacements
the potential energy must be expressed in terms of normal
coordinates with the effective mass equivalent to the reduced
mass of the relevant vibrating system, including 16O and 18O,
respectively. Thus, the effective mass of the SrTiO3 system is
estimated as about 45.78 amu for STO16 and 47.11 amu for
STO18. This represents the reduced mass of the corresponding
vibrating system constituted of the Sr ion of mass MSr =
87.62 amu and the TiO3 cluster of mass MTiO3 = 95.9 amu
for the STO16 and 101.9 amu for the STO18, respectively.
Then, according to quantum mechanics, if the force constant
is not changed via the isotope replacement of 16O with 18O, the
zero-point energy (quantum fluctuation) is proportional to the
inverse square root 1/m1/2. Accordingly, on the replacement
of 16O with 18O, the reduced mass increases and (m18/m16)

1/2

is calculated to be ∼1.029, which corresponds to the frequency
change in the Slater mode [11, 15], due to oxygen isotope
exchange. In addition, the exchange rate x dependence of the
saturation temperature is given by

θs = θs0

(
1 + 0.003x

0.13

)1/2 (
1 + 1.33x

45.78

)−1/2

(17)

where θs0 is the saturation temperature of the STO16 crystal.
The other model parameters are selected to be a =

3.9 Å
−1

and D = 0.01 eV. Using the model, we estimate
the saturation temperature and the Curie (classical transition)
temperature of STO16 as θs0 ≈ 20 K and T0 ≈ 16 K.
These values are in good agreement with those obtained by
Hayward et al [45], using the quantum Landau model and

4
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Figure 1. Adopted parameters d , υ and m. The exchange ratio
dependences are displayed. The interaction υ is almost constant;
however, the splitting distance d increases a little with increasing x .

Barret equation for the dielectric susceptibility to determine
the best fit parameters to the paraelectric–ferroelectric phase
transition in SrTiO3 as a function of temperature and [100]
stress, determined experimentally by Fujii et al [51], to fit
the temperature dependence of the reciprocal of the dielectric
susceptibility of SrTiO3 according to measurements of Müller
and Burkard [2], or to fit the phase diagram for the ferroelectric
phase in SrTiO3 as a function of isotope exchange using
the peak in the dielectric susceptibility to measure transition
temperature, experimentally obtained for different oxygen-
exchanged samples by Itoh and Wang [15, 34]. Moreover, θs0

is also similar to that obtained by Dec and Kleemann [52],
and agrees with the direct inspection of the temperature
dependence of the inverse dielectric constant ε−1 data of
SrTiO3 due to the fact that the quantum mechanical zero
point is reached at 10 K ≈ θs/2, with essentially temperature
independent dielectric susceptibility below it [53].

From the assumption, the exchange ratio dependences
of potential splitting distance d , interaction parameter υ,
and effective mass m are presented in figure 1. It is
obvious that interaction parameter υ is almost constant with
x , while the splitting parameter d monotonically increases
a little with increasing x . From the calculation, we can
determine the x dependence of transition temperature Tc,
characteristic temperature T0, and saturation temperature θs.
The results are presented in figure 2. According to this, it is
possible to recognize that the effect of quantum fluctuations
characterizes low-Tc systems. Here also, it is obvious that
the saturation temperature θs is almost constant with x , while
the characteristic temperature T0 monotonically increases with
increasing x . This clarifies the mechanism of the quantum
phase transition of STO18-x as the 18O exchange suppresses
the quantum fluctuation through the decrease of the quantum
effect magnitude η to induce the ferroelectric interaction
(ferroelectricity).

The calculated composition dependence of transition
temperature Tc due to the oxygen isotope exchange, as
shown in figure 2, confirms the existence of the critical
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Figure 2. The x dependences of transition temperature Tc, classical
transition temperature T0 and saturation temperature θs. The
transition temperature can be approximated by a power law: fit-1
shows Tc ∼ (x − xc)

0.5 in a range of 0.4 < x < 1, while fit-2 shows
Tc ∼ (x − xc)

0.25 in a range of xc < x < 0.4.
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Figure 3. Temperature dependence of static susceptibility χ for
STO18-x for several substituted fractions x of the isotope 18O. The
exchange ratio x is selected as 0, 0.2, 0.3, 0.318, 0.325, 0.4, 0.5,
0.75, and 1.

concentration xc (critical point), above which ferroelectricity
evolves [15]. This quantum critical point marks the beginning
of the novel quantum phase transition nature [17], and might
characterize the domination of the ferroelectric phase behavior
and the occurrence of ferroelectric order. From figure 2, the
ferroelectricity is induced at the transition temperature Tc ≈
23.1 K for a maximum isotope exchange. Hence, we estimate
the critical value xc ≈ 0.32. The phase transition temperature
Tc shifts to a high temperature with x in a nonlinear manner
as seen in figure 2, and a relation Tc ∼ (x − xc)

1/2 holds
in a wide range of x , which agrees with the value obtained
by fitting the experimental data to the quantum ferroelectric
relation [15, 17, 32].

In addition, calculations are performed to give the
temperature dependence of the static susceptibility and the
inverse static susceptibility. Figure 3 presents the temperature
dependence of the static susceptibility χ for different values

5
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Figure 4. Temperature dependence of the inverse of static
susceptibility χ−1 for STO18-x for several 18O-isotope exchange
rates x selected as 0, 0.2, 0.3, 0.318, 0.325, 0.4, 0.5, 0.75, and 1.

of the 18O-exchange rate. The susceptibility χ for STO16
increases with decreasing T monotonically, and becomes
almost temperature independent at low temperatures (T <

5 K < θs/2), showing the typical quantum paraelectricity.
For x < xc, the transition does not take place and the
susceptibility has a rounded and finite maximum at low
temperature even near 0 K, which increases with x . The
phase transition characterized by the divergence of the static
susceptibility [1, 2, 54], takes place for the composite rate
x � 0.32, confirming their probable ferroelectricity, and as x
increases the divergent behavior shifts to higher temperature,
increasing the transition temperature Tc, which is always finite.

From the inverse susceptibility χ−1 curves, figure 4,
the ferroelectric phase also shows stabilization in the low
temperature region against the quantum fluctuations, and the
larger is Tc, the higher is the value at T = 0 K. The vanishing
of χ−1 at Tc, and the precursor decrease of its value on
approaching Tc from above, justify the term ‘soft mode’ used to
qualify the normal mode associated with the order parameter of
the transition [14, 21, 22, 27, 45]. The temperature dependence
of the inverse static susceptibility confirms that of the soft
mode (frequency), indicating clearly the perfect soft mode type
ferroelectric phase transition (continuously complete vanishing
at Tc of the soft mode frequency of the ferroelectric soft mode)
for x � xc.

On the other hand, for x � xc, above Tc the soft mode
through χ−1 follows the Curie–Weiss law except around the
transition temperature if it is finite, while below the transition
the soft mode is finite but does not follow a Curie–Weiss law.
In contrast, for x < xc, the soft mode stops softening and
becomes also temperature independent in the low temperature
region near 0 K. But as x approaches a critical value xc from
below, the soft mode shows a strongly rounded softening and
a weakened freezing tendency, suggesting the occurrence of
a ferroelectric state in the low temperature region. Also from
figure 4, as the rate x increases, the influence of quantum effect
on inverse susceptibility decreases.

Figure 5 shows the inverse susceptibility at T = 0 K,
χ−1(T = 0), plotted as a function of the 18O-exchange rate x .
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Figure 5. The inverse zero temperature static susceptibility
χ−1(T = 0) and the effective exponent for χ above the transition
temperature of STO18-x .

As clearly shown, when x < xc, χ−1(T = 0) linearly
decreases to zero as x increases, while for x � xc, χ−1(T = 0)

increases strongly and monotonically, but not in a perfect linear
manner, with x . This result clarifies the typical quantum
paraelectric behavior for x < xc, and quantum behavior of
the ferroelectric phase transition mechanism for x � xc, with
evidence of suppression of the quantum effect as x increases.

Also presented in figure 5 is the x dependence of the
effective exponent γ for static susceptibility χ for x �
xc, obtained by fitting the inverse susceptibility χ−1 to the
relation of (T − Tc)

γ /C by least-squared calculations in a
range of Tc < T < Tm, where Tc + 2 K � Tm �
Tc + 10 K. At the full 18O-exchange rate limit x = 1,
γ = 1 in good agreement with the classical Landau-type
behavior, confirming however the important weakening of the
quantum effect in the fully exchanged limit. As x decreases
from the maximum value of unity, the effective exponent γ

increases slowly. But, while quantum critical point xc is
approached from the high x value, γ increases strongly and
shows a maximum around 1.90 at xc. This effective exponent
can be compared to the critical exponent, characterizing a
critical behavior of the susceptibility, obtained from quantum
ferroelectric relation whose theoretical value for quantum
ferroelectric phase transition at xc is 2 (ideal value for quantum
ferroelectrics) [18, 19], and from experimental results by fitting
dielectric constant data with a theoretical generalized quantum
law [15, 17].

In order to understand well the origin and conditions
of appearance of the phase transition, and thus of the
ferroelectricity, we present in figure 6 the temperature
dependence of specific heat for different 18O-isotope exchange
rates x obtained by numerical calculation. We can see that
for x < xc no discrepancy has been observed on the specific
heat, confirming the overall quantum paraelectric behavior,
while for x � xc, upon further increasing x , the specific heat
shows a peak at low temperatures (low-Tc ferroelectric phase
transition). These peaks of the specific heat curves shift to
higher temperature as x increases. According to all this, the
specific heat values are strongly suppressed in STO18-x due to
the quantum effect.
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Figure 6. Specific heat as a function of temperature for STO18-x
and for four different exchange rate values between xc and 1.

4. Discussion and conclusion

In this study we have shown the important influences of the
quantum fluctuations on the phase transition, especially at low
temperatures. A quantum particle within a local potential of the
double Morse type is considered by a mean-field interaction
under the quasiharmonic approximation. Obviously, the
model analytically takes into account the possibility to shift
the potential minima and hump, in order to reproduce the
richness of the physics of molecular solids whose backbones
are often so flexible that chemical bonds must continuously
relax or contract to avoid bond breaking. Furthermore, our
simple model is successful qualitatively to describe a structural
ferroelectric phase transition and phase diagram induced by
or due to appropriate applying external fields. Also the
quantum effects are important if the transition takes place
at low temperature. Moreover, depending on the model
parameters, the ferroelectric localized distortions involving
also heavy atoms do exhibit double wells, whose ground state
lies below the barrier, thus allowing tunneling. Through our
renormalization process (quasiharmonic approximation), due
to the zero-point vibration of the particle, the effective single-
site frequency � is nothing but the so-called ‘soft mode’
frequency characterizing the displacive ferroelectricity. The
quantum mechanical temperature θs is also related directly
to the energy scale of the transition mechanism [37, 54].
Accordingly, the softening phenomenon of the soft mode is one
important mechanism for driving the ferroelectric transition in
the perovskite oxides.

The pseudo-Barrett equation obtained confirms the
important role of the Barrett equation in the investigation of
theory of the ferroelectric phase transition, which fitted well
some experimental data. The mechanism of phase transition
here is attributed to the dominance of the softening of optic
phonon branches so that the Einstein mode approximation
appears to be appropriate for ferroelectric and most improper
ferroelastic phase transitions [40, 47].

A number of quantum paraelectric systems have been
identified, including KTaO3 [55]. However, SrTiO3 is

the first system in which quantum paraelectricity was
identified and one of the best-studied materials in the
current literature, which induces ferroelectricity by applying
external fields [15, 32–34, 49, 51]. In order to explain the
evolution of the ferroelectricity in STO18-x , it is necessary to
consider how the parameters will be affected by the oxygen
isotope replacement. With an appropriate choice of oxygen-
exchange rate x dependence of model parameters in STO18-
x , we try to explain the quantum paraelectric–ferroelectric
transition induced by the change of the oxygen effective mass.
For quantum paraelectric–ferroelectric transition through the
chemical substitution, we have paid attention to the inclusion
of zero-point energy and a critical concentration was found to
exist in the vicinity of x = 0.32 for STO18-x , which is in good
agreement with the experimental value of 0.33 obtained by Itoh
and Wang [15] and other experimental measurements [30–32].
At the ‘quantum displacive limit’ defined by the set of coupling
parameters for which the critical temperature Tc of the phase
transition is equal to zero, the quantum mechanical effect
becomes extremely important. All these results support the
quantum mechanical ‘vector model’ proposed by Schneider
et al [18, 19]. The change in the vibrational system due to the
oxygen isotope is then comparable to the zero-point vibration
in quantum paraelectrics.

From our assumption, the interaction strength υ for
STO18-x increases from 0.13 to 0.133 eV Å

−2
for STO16

and STO18 respectively, which might support the absence of
change in their lattice parameters [14, 34]. However, the
potential splitting parameter d increases from 0.24 for STO16
to 0.286 Å for STO18, which might characterize the volume
effect. Taking into account the mass effect through the oxygen
isotope substitution, we can conclude that the oxygen isotope
exchange effect on the evolution of ferroelectricity in SrTiO3

depends on both volume and mass even if it is predominated
by the mass effect [17, 34].

Amongst other things, although the crystal structure of the
SrTiO3 ferroelectric phase has not been determined and the
symmetry is clearly not the same as that of the ferroelastic
phase I 4/mcm corresponding to paraelectric one, this study
bear theoretical discussion to clarify the phase transition
mechanism and reports that the paraelectric–ferroelectric phase
transition in STO18-x is second order, as already concluded by
Dec et al from an absence of thermal hysteresis [56]. This
result also agrees with experimental results of Itoh et al, who
have reported that the ferroelectric transition is expected to be
of first or second order [49, 57].

The calculated phase diagram as a function of 18O-
exchange rate shows that the STO18-x with x � 0.32
are quantum ferroelectrics, in good agreement with the
experimental data [14, 15, 23, 30–32]. On the other hand,
knowing that STO16 is a quantum paraelectric, by increasing x
(‘effective mass’) through 18O-isotope exchange, the soft mode
shifts to smaller frequencies and the system is closer to a lattice
instability. The soft mode shifts have a parallel behavior here,
as shown by inverse susceptibility in figure 4. The displacive
type phase transition was recognized in SrTiO3 and the crucial
role played by the oxygen atoms in the softening mechanism
of the ferroelectric mode in STO18-x , through exchange rate

7
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concentration x , was confirmed theoretically [14, 15, 27].
Thus, the inclusion of the zero-point energy in the framework
of the quasiharmonic approximation describes well the detailed
evolution of the ferroelectricity and the phase transition in
STO18-x systems.
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